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MASKING MICRODATA FILES

Jay J. Kim and William E. Winkler, Bureau of the Census

ABSTRACT

  Government agencies collect many types of data, but due to confidentiality
restrictions, use of the microdata is often limited to sworn agents working on
secure computer systems at those agencies.  These restrictions can severely affect
public policy decisions made at one agency that has access to nonconfidential
summary statistics only.  This necessitates creation of microdata which not only
meets the confidentiality requirements but also has sufficient utility. This paper
describes a general methodology for producing public-use data files that preserves
confidentiality and allows many analytical uses.  The methodology masks
quantitative data using an additive-noise approach and then, when necessary,
employs a reidentification/swapping methodology to assure confidentiality.  One of
the major advantages of this masking scheme is that it also allows obtaining precise
subpopulation estimates, which is not possible with other known masking schemes.
In addition, if controlled distortion is applied, then a prespecified subset of
subpopulation estimates from the masked file could be nearly identical to those
from the unmasked file.  This paper provides the theoretical underpinning of the
masking methodology and the results of its actual application using examples.
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1.  INTRODUCTION
   While many types of data are collected by government agencies, use of the
microdata files is often limited to sworn agents working on secure computer
systems at those agencies.  The confidentiality restrictions can severely affect
public policy decisions made at one agency that has access to nonconfidential
summary statistics but not to the microdata that are collected at two or more other
agencies.  The application of this paper is in producing a public-use data base that
contains much data from the March Supplement to the Current Population Survey
(CPS) and income data from the Internal Revenue Service (IRS) 1040 Form.  The
data are for use by the Department of Health and Human Services (HHS) in setting
policy regarding earned income credit and other benefits.  The microdata is masked
in such a manner that both Bureau of the Census and IRS confidentiality
restrictions are met.  No masked IRS quantitative data can alone be used in
reidentifications.  
   The main methodology is an additive-noise approach (Kim 1986) for masking
multivariate normal data that preserves confidentiality and can preserve many
essential characteristics of the data such as means, variances, and correlations. 
The CPS and IRS data of the application are known to be approximately



2

multivariate normal.  While the methodology has been extended to general data
distributions (Sullivan and Fuller 1989, 1990; also Little 1993), the extension
involves transforming general data to multivariate normal, masking, and then
transforming the masked data back to the original scale.  As we begin with
multivariate normal data, we need not be concerned with the two additional
transformation steps of the more general Sullivan-Fuller methods.  We do note that
the set of general software that we developed for arbitrary multivariate normal
data could be extended to the general data by inclusion of software performing the
two Sullivan-Fuller transforms.
   The secondary methodology of this paper is a sophisticated
reidentification/swapping technology that is based on existing record linkage
concepts (Winkler 1994, 1995).  The matching software uses the masked CPS and
IRS quantitative data along with other variables such as age, race, sex, and State
to produce reidentifications with the original merged file of unmasked CPS and
IRS data.  Since we know true matching status, we can minimize the number of
pairs of records in which quantitative data is swapped.  While swapping can help
preserve confidentiality, it can reduce the analytic usefulness of the file (Little
1993).  By minimizing swapping and preserving means and covariances on
specified subdomains, we assure the analytical usefulness of the final file as we
show later. 
   The outline of this paper is as follows.  In the second section of this paper we
describe the data files and the methodologies for additive-noise masking,
reidentification/swapping, and controlled-distortion.  The third section provides
results.  In the fourth section, we describe how the methods of this paper can be
used to verify the analytic validity of public-use files that are produced, discuss
some of the limitations of the masking methodology, and provide an overview of
the general software we developed.  The final section consists of summary and
conclusions.

2.  DATA AND METHODS
   This section describes the data, the masking methodology, the
reidentification/swapping methodology, and the controlled-distortion
methodology.
2.1.  Data to be Masked
   The original unmasked file of 59,315 records is obtained by matching IRS
income data to a file of the 1991 March CPS data.  The fields from the matched
file originating in the IRS file are as follows:

I)  Total income;
ii)  Adjusted gross income;
iii)  Wage and salary income;
iv)  Taxable interest income;
v) Dividend income;
vi) Rental income;
vii) Nontaxable interest income;
viii) Social security income;
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ix) Return type;
x) Number of child exemptions;
xi) Number of total exemptions;
xii) Aged exemption flag;
xiii) Schedule D flag;
xiv) Schedule E flag;
xv) Schedule C flag; and
xvi) Schedule F flag.

   The file also has a match code and a variety of identifiers and data from the
public-use CPS file.  Because CPS quantitative data are already masked, we do not
need to mask them.  We do need to assure that the IRS quantitative data is
sufficiently well masked so that it cannot easily be used in reidentifications, either
by itself or when used with identifiers such as age, race, and sex that are not
masked in the CPS file.  Because the CPS file consists of a 1/1600 sample of the
population, it is easier to minimize the chance of reidentification.  We primarily
need be concerned with higher income individuals or those with distinct
characteristics that might be easily identified even when sampling rates are low.  
2.2.  Masking Methodology
   Masking is via an additive noise approach (Kim 1986, see also Sullivan and
Fuller 1989, Sullivan and Fuller 1990, and Little 1993).  Adding random noise with
the same correlation structure as the original unmasked data is currently the only
method (Little 1993) that preserves correlations.  Appendix A.3 allows us to
determine means and covariances on arbitrary subdomains.  Theoretical details are
in Appendixes A.1, A.2, A.3, and A.4.  Masking is done according to the following
steps:
i)   Calculate the variance/covariance for income types iii) through viii) in 
subsection 2.1.  This results in a 6×6 variance/covariance matrix.
ii)  Take c×100 percent of the above variance/covariance and generate random
numbers using subroutine RNMVN in International Mathematical and Statistical
Library (IMSL).  Note that RNMVN requires the users to provide the
variance/covariance which the generated random numbers should have. 
   This process produces 59,315×6 matrix of random numbers.  The expected value
of the generated random numbers for each of the 6 arrays is 0.
iii) Add the random numbers generated in ii) to the income fields in section 2.1.  
Note that both the raw income data in section 2.1 [income types iii) through  viii)]
and the noise in step ii) of this section are of matrix 59,315×6.  Thus  the addition
is elementwise over the matrices.
iv)  Sum up incomes for each individual for income types iii) through viii) in
section 2.1 and calculate the difference between the sum and the total income, and
the difference between the sum and the adjusted gross income.
v)  Sum up noise inoculated incomes of types iii) through viii) for each individual. 
Add to the sum of the perturbed incomes the difference between the sum of raw
incomes and the total income calculated in step iv) above. 
   This gives the masked total income.  Masked adjusted gross income is produced
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similarly.
   Six income variables are masked directly and the remaining two are masked in a
manner that preserves sums.  If top-coding is required for the incomes at, say,
200,000 (or -200,000), it can be done after the above five steps.  In some
situations, data providers censor outliers prior to masking because outliers (even
when masked) are particularly easy to reidentify.  In our approach, we specifically
assume that data are not censored because censoring reduces the analytic validity
of the masked file.  A masked file is analytically valid if, for a (set of) analysis(es),
it will give approximately the same numbers and yield the same conclusions as the
unmasked (original true) file.  The subdomain adjustment formulas (Appendix A.3)
assure that subdomain analyses with the masked data are analytically valid because
means and covariances are preserved.  When we refer to accuracy as being good,
we mean that estimates in the masked or masked/swapped data are quite consistent
with estimates in the unmasked data.  It is straightforward to make modifications
to deal with censored data. 
   As the users might want to tabulate the counts of individuals depending on the
recipiency status of various IRS income and the noise inoculation completely
changed the zeros and non-zeros both alike, we add flags indicating whether each
amount of unmasked income was zero or not.  This allows them to analyze the
data for recipient group and nonrecipient group, separately.
   Even after masking, it may be possible to reidentify a certain proportion of
records in the masked file with the original, corresponding records in the
unmasked file.  While the 1/1600 sample assures that most mid-to-low income
individuals cannot be reidentified in the entire population using information from
the public-use file, some individuals with high incomes or unusual combinations of
age, sex, race and income characteristics might be reidentified.  Specifically, if we
can reidentify a mid-income record across masked and unmasked sample files and
there are 2000 individuals in the population with essentially the same
characteristics as those that were used in the reidentification, then there is only a 1
in 2000 chance of a reidentification.  In other words, it is not possible to reidentify
such a mid-income individual in the entire population via information in the public-
use file.  However, it may still be possible to reidentify individuals with high
incomes or with unusual characteristics.  To minimize the chance of
reidentification, we need to employ additional procedures in a manner that does
not eliminate the analytical usefulness of the public-use file.  Such minimization
may be possible because we are the data providers and have knowledge of the
exact truth of reidentifications between unmasked and masked sample files.  
2.3.  Reidentification/Swapping Methodology
   To determine how much reidentification is possible, we proceed in two stages. 
First, we match the merged raw data file against the masked file using record
linkage software (Winkler 1994).  Based on the reidentification rate, we next swap
quantitative data according to a proportion that minimizes the chance of
reidentification.
   During the first stage, we use blocking variables such as age, race, sex, and State
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code and matching variables such as the IRS income and CPS quantitative
variables.  Blocking is a record linkage term that means that we only consider pairs
that agree exactly on the blocking variables.  The quantitative matching variables
need not agree exactly.  String comparators and other advanced metrics are used in
computing distances between records in a manner that is compatible with the main
decision rule.  The matching decision rule is based on an information-theoretic
extension of the likelihood ratio test (Fellegi and Sunter 1969) that assigns scores
to each pair based on a function of their associated likelihood ratios.  Likely
reidentifications, called matches, are given higher scores, and other pairs, called
nonmatches, are given lower scores.  To best separate the pairs into matches and
nonmatches, we use a version of the EM algorithm for latent classes (Winkler
1994) that determines the best set of matching parameters under certain model
assumptions which are not seriously violated in this particular situation.  To force
1-1 matching efficiently, we apply an assignment algorithm due to (Winkler 1994). 
When a few matching pairs in a block can be reasonably identified, many other
pairs can be easily identified via the assignment algorithm.  The assignment
algorithm has the effect of drastically improving matching efficacy, particularly in
reidentification experiments of the type given in this paper.  
   During the second stage, we first collapse cells (age × race × sex) to assure that
there are sufficient candidates for swapping.  The collapsing strategy is similar to
those used in sampling and nonresponse imputation.  Within collapsed cells we
randomly swap quantitative data according to a proportion that we specify.  Since
we know true matching status, we can minimize the swapping proportion because
we know exactly which pairs are reidentifications.  We note that the specific set of
reidentifications varies with each different seed value used at the masking stage. 
Swapping preserves means and correlations in the subdomains on which it was
done and in unions of those subdomains.  On arbitrary subdomains, however,
collapsing and the amount of swapping can adversely affect the analytic validity of
the files.  If swapping is done such that each record that is swapped is only
swapped with another record in that subdomain, then we say that we have
controlled that subdomain.  Means and correlations among swapped variables
within controlled subdomains are necessarily the same.  We cannot hope for
confidentiality while providing analytic validity in arbitrary subdomains above a
certain size.  If we were to provide such analytic validity in subdomains above a
certain size, then we would necessarily be able to reidentify every record in the file.
   We say that a specified record has disclosure risk of x percent if the estimated
probability of the match being correct is x percent.  Belin and Rubin (1995) have
given a method of estimating the probability of a match being correct that requires
a training set and does not work with the data of this paper.  An alternative
method of Winkler (1994), which requires an ad hoc intervention and no training
set, is used to estimate disclosure risk.  
2.4.  Controlled Distortion
   In this section, we introduce a third procedure, called controlled distortion,
provide a justification for using it, and relate it to the noise addition and swapping
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procedures of the two previous sections.  Addition of noise has the advantages that
we know the distribution of the noise that is added to each record and that we can
deduce the nonmasked means and variances in arbitrary subdomains via a
procedure in Appendix A.3.  The main disadvantage of noise addition is that
individual records with quantitative data that is significantly different from other
records are easily identifiable (ei).  An ei-record is one whose masked data can
still be used to match it against the correctly corresponding unmasked data record. 
The first way of dealing with ei-records is data swapping.  Within a subdomain
defined by records agreeing on characteristics such as age range, sex, and race, we
can swap all (or an arbitrary subset) of an ei-record's quantitative data with the
corresponding quantitative data from another record in the subdomain.  The
swapping can be against a random record or against the second best match.  The
best match is the ei-record.  Swapping has the advantage that it is straightforward
in concept.  If only a small proportion of records is swapped, then means and
correlations may not be seriously distorted.  
   The disadvantage of swapping is that means and correlations are only preserved
for the subdomains in which swapping is done.  For arbitrary subdomains, means
and correlations for masked data may exhibit large deviations from the means and
correlations for unmasked data.  We can partially address the large-deviation
problem as follows.  During the first swapping pass, identify the ei-records whose
second best matches are not close and do not swap them.  Enlarge the subdomains
to assure that each remaining, unswapped ei-record can be matched against a
record whose quantitative data is much closer.  Perform swapping in the larger
subdomains.  The advantage of the two-pass procedure is that it will (nearly)
preserve means across arbitrary subdomains.  The deviations of correlations,
however, may not be as well preserved.
   Controlled distortion is a procedure on a subdomain A where we change the
values in one record arbitrarily and also perform a series of complementary
changes so that means and covariances are preserved in the subdomain.  In
Appendix A.5, we show that valid controlled distortion procedures exist provided
that the subdomain contains at least L  records where L is the number of variables2

for which we preserve means and covariances.  The advantage of controlled
distortion is that ei-records can be distorted in an arbitrary manner specified by the
data provider and can assure confidentiality.  Controlled distortion has the same
disadvantage as swapping because means and correlations cannot be preserved
across arbitrary subdomains.  

3.  RESULTS
  In this section we begin with results for the files in which masking and no
swapping have taken place.  This allows us to show how the additive-noise
approach yields files having means and covariances nearly identical to the original,
unmasked file on many subdomains.  We then present results for the files in which
both masking and swapping have been performed.  We conclude with results on
disclosure risk in the files.
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3.1.  Utility of the Full Sample Data
   Since the model building requires mean and variance/covariance or correlation of
the variables involved, statistics were calculated for six variables in the raw and
masked data.  The means of the raw and masked data are almost identical (Table
1).

 Table 1.  Means of Raw and Masked Data
                                 
  Type            Raw      Masked

  Wage         23,799      23,784
  Tax Int       1,825       1,823
  Div             587         587
  Rent          1,190       1,187
  Ntax Int        342         342
  Soc Sec         947         948

Table 2.  Correlation for Raw and Masked Data
                        Raw  Masked
  Wage vs Dividend      .18     .18
  Wage vs Tax Int       .12     .12
  Dividend vs SS        .12     .12
  Tax Int vs Rent       .08     .08
  Dividend vs Rent      .04     .04
  Ntax Int vs SS        .04     .04

   Table 2 shows that all correlations are the same to two decimal places.  As
indicated earlier, total and adjusted gross income were masked indirectly by
summing up masked components of the total and adjusted gross income except the
difference between the sum of the unmasked data and total or adjusted gross
income.  

The means of the total and adjusted gross income from the masked data are
virtually identical as those from the unmasked data.  They differ by less than
0.0007.  This can be expected since the noise was added to all components has
zero expected value and the sample size is quite large.  Similarly, the variance of
the total and adjusted gross income from the masked data are virtually identical to
those from the unmasked data. 
3.2.  Subdomain Estimation - before Swapping or When Swapping Was
       Controlled for Subdomain
   In this subsection we examine subdomain estimation which is of special interest
to data users.  Appropriate subdomain estimation formulas for the masked data are
given in Appendix A.3.  Subdomain means are not affected by the masking.  Only a
minor adjustment is needed to the variance/covariance according to the formula
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shown in the appendix because the amount of noise added is low (in terms of the
variance/covariance).  The adjustment also has almost no effect on the correlation.
   To determine how well the subdomain adjustment formulas work, we compute
estimates for those persons whose "return type" is 4, (unmarried head of
household return).  Generally, the estimates of means from the masked data are
excellent.  For five items, they are virtually identical with those from the unmasked
data.  However, the estimate of mean nontaxable interest (61) from the masked
data is more than 10 percent off from the mean (70) of the unmasked data.  Tables
3 shows correlations between the income variables for the unmasked and masked
data, respectively.

Table 3.  Correlation for Raw and Masked Data for Return Type = 4

                          Raw     Masked
   Wage vs Dividend      .027       .029
   Wage vs Tax Int       .108       .105
   Dividend vs SS        .155       .154
   Tax Int vs Rent       .172       .171
   Dividend vs Rent      .040       .039
   Ntax Int vs SS        .056       .052

   Estimated correlations of the masked data on this subdomain are generally good,
agreeing with the unmasked data to two decimal places.  While we do not show it
here, the same statistics were estimated from the masked data for other
subdomains: Return type=1 (single return) and Schedule C=1 (Schedule C was
filed in the tax return).  Similar close agreements were found.
   Thus far we have observed the behavior of subdomain estimates when the
subdomain is formed by a variable which is not masked.  What happens when the
subgroup is formed by a masked variable itself?  By adding noise, in effect we
expand the range of values the variable can take.  If we use the same cutoff to
form a subgroup for both the unmasked and masked data, there is no guarantee
that the same elements will be in the same group in both data sets.  To check on
the performance of statistics when the subdomain is formed based on the masked
variable, wage and salary, shortened to wage, is chosen to be used as a
classification variable.  The subdomain consisted of records having wage less than
15,000.  The subdomain in the unmasked file had 28,268 records and the
comparable subdomain in the masked file had 28 more records.  Means were 
virtually identical.  Correlations were virtually identical, differing only in the third
decimal place.  
3.3.  Subdomain Estimation - When Swapping Was Not Controlled on the
Subdomain
   Our swapping procedure involved swapping only the eight IRS income fields and
three CPS income fields such as wage (it will be called CPS Wage), adjusted gross
income (it will be called CPS Agi) and aggregated sum of rent (net rent), dividend
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and interest (it will be called CPS Prop).  This swapping procedure will not
generally preserve means and covariances on arbitrary subdomains such as the
subdomain determined by those records corresponding to a person having filled
out a Schedule C return.  Table 4 compares means for two swapping rates, 5% and
20% with the raw and unmasked data.

Table 4.  Means before And after Swapping for Schedule C Users, n = 7,819

               Raw   Masked  5% Swap 20% Swap
  Wage      24,715   24,677   25,338   26,891
  Rent       2,820    2,822    2,779    2,746
  Tax Int    2,178    2,174    2,171    2,145
  Dividend     783      779      773      755
  Ntax Int     393      391      366      346
  Soc Sec      790      790      803      822

The table shows that I) subdomains estimates using raw and masked data agree
closely; ii) subdomain estimates on the 5-percent swapping file still agree closely
with raw and masked data estimates; and iii) 20-percent swapping differ by a
greater amount from the raw and masked data estimates than 5-percent estimates.

The next table shows some selected correlations.

Table 5.  Correlations before and after Swapping for Schedule C Users, n = 7,819

                                  Swap Rate  
Fields             Raw   Masked    5%    20%      
Wage, Dividend   .6361   .6352   .6143   .6217
Wage, Tax Int    .1903   .1900   .2425   .2413
Dividend, SS     .1535   .1547   .1528   .1346
Tax Int, Rent    .1984   .1978   .1967   .2167
Dividend, Rent   .1291   .1285   .1265   .1304
Ntax Int, SS     .1057   .1062   .1181   .0957

Swapping has some impact on the correlations but still yields correlations that are
good.  Accuracy is better with 5-percent swapping than with 20-percent swapping.
3.4.  Reidentifcation and Confidentiality
   We investigated the masked file and the masked/swapped file.  The risk of
disclosure for the masked file is somewhat high.  As much as 0.8% of the records
have a probability of disclosure above 20%; the remaining 99% have a disclosure
risk of less than 0.02%.  The disclosure risk for all records in the masked/swapped
file is below 0.1%.  

4. DISCUSSION
   The discussion covers how representative the masking procedures are, their
ability to produce analytically valid files, and some of their limitations.  The section
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also provides an overview of our general computer software for masking arbitrary
multivariate normal files.
4.1.  Representativeness of Results
   The masking/swapping procedures were repeated with two additional seed
numbers for the random noise-generation routine.  The correspondences of means
and correlations between unmasked and masked/swapped files were consistent
with those given in this paper.  We note the actual set of reidentification/swaps
varies with the seed numbers because reidentifications depend on how close
individual masked data records are to corresponding unmasked data records.  The
closeness is dependent on the random noise which varies with the seeds.
4.2.  Analytic Validity of Public-Use Files
   Swapping can distort the correlations, particularly on subdomains.  We suggest
releasing two copies (one for each seed used in the random number generator) of
the masked/swapped files.  If users cannot reproduce a statistical analysis using
data from one copy that was done on the other copy, then they can be assured that
the public-use file will not support the attempted analysis.  In that case, there are
two recourses.  The first is for the data providers to supply two more copies of the
public-use file that have been masked and swapped in a manner that supports the
originally attempted analysis.  If that is not possible, then the only second recourse
is to have the statistical analysis performed on the original, unmasked data.
4.3.  Limitations
   When a masked/swapped continuous variable is used for categorization, the
number of observations in categories may not be close to those from the unmasked
data.  This is because the categorization implicitly corresponds to subdomains in
which swapping may not be controlled.  The summary statistics for categories
between unmasked and masked/swapped data can be consistent if the sizes of the
categories are large.  If the subdomain of interest is of small size, then we should
be careful about using statistics for the subdomain.
4.4.  Software
   The current version of the computer software can be used for masking and
swapping general multivariate normal files.  The first program (in SAS) produces
an output file consisting of the variance/covariance matrix for the raw data.  The
second program (in FORTRAN) calls the IMSL routine RNMVN to produce
random multivariate noise with the same variance/covariance as the raw data.  The
third combines raw data and noise to produce the masked file.  The fourth program
(in C) does swapping.  All software is portable provided the IMSL routine
RNMVN is available. If RMNVN is not available, then similar types of multivariate
normal noise can be generated using SAS or various public-domain random
number generation packages.

5.  SUMMARY AND CONCLUSIONS
   We demonstrated a methodology for producing a confidential, analytically valid,
public-use file that contains eight income fields from the 1990 IRS Tax Return file
and the remaining data from the 1991 CPS public-use file.  The file was produced
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in two stages.  The first stage consisted of adding random noise with the same
correlation structure as the original, unmasked data.  The second stage involved
reidentifying and swapping records via a record linkage approach.
   Whereas the masked file is analytically valid with means and correlations (even in
many subdomains) that are very close (3 decimal places) to means and variances in
unmasked files, the risk of disclosure for the masked file is somewhat high.  As
much as 0.8% of the records have a probability of disclosure above 20% because
they have unusual combinations of characteristics that make it relatively
straightforward to distinguish from other recrods.  The remaining 99% have a
disclosure risk of less than 0.02%.  The reidentification/swapping procedure
reduced the disclosure risk in the masked/swapped file to below 0.1% while
preserving means and covariances in a specified set of subdomains.  For the entire
domain, means and correlations from the masked/swapped file were typically
within 3 decimal places from the corresponding means and correlations in the
unmasked file.  Deviations in many subdomains were higher; sometimes deviating
in the second decimal place.   
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APPENDIX A.1.  NOISE INOCULATION
Let x  be the unmasked j  income value of the i  person, I=1,,,59,315 andij

th     th

j=3,,,,8.  Also let e  be the noise added to x  and y  = x  + e , I=1,,,59,315 andij      ij  ij  ij  ij

j=3,,,,8.
Let X be the matrix having x  as elements, I=1,2,,,,59,315 and j=3,4,,,8. ij

Similarly, E = {e } and Y = {y }.  Let Var(X) = .   Then we are using Exp(E) =ij     ij

0 and Var(E) = c , where 0 is a 59,315x6 matrix having all 0 elements.  Thus
E(Y) = E(X) and Var(Y) = (1+c) .  The variance of unmasked variables can be
recovered by {1/(1+c)}Var(Y).  

Let x  = , I=1,2,,,59,315  and diff  = x  - x , I=1,2,,,59,315 and j=1,2.  Thei.      ij  ij  i.

masked total and adjusted income can be expressed as follows.

y  =  + diff , I=1,2,,,,,59,315i1    i1

and

y  =  + diff , I=1,2,,,,,59,315.i2    i2

APPENDIX A.2. DERIVATION OF VARIANCE/COVARIANCE
Since unmasked income and noise are independent, Var(y) = (1+c)  for each

component income, where  is the variance of x.  Total income can be
reexpressed for deriving variance and covariance.

y  = x  + . i1  i1

Thus Var(y ) = Var(x ) + Var( ), where y  and x  are masked and unmasked1   1     1  1

total income (first IRS income variable on the file), and  is the noise added to

the j  income disregarding subscript for person number, which can be reexpressedth

as follows:

Var(y ) = Var(x ) + .1   1

Covariance between total income and each component of the total income can be
expressed as follows:

Cov(y ,y ) = Cov(x + , x +e ) = Cov(x , x ) + Var(e ) + Cov(e ,e )1 j   1  j j   1  j   j   i j

The variance of adjusted gross income and covariance between the adjusted gross
income and each of the components of the adjusted gross income can be derived
similarly.  However, the covariance between total income and adjusted gross
income is a little different from what we have seen.
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Cov(y ,y ) = Cov(x + , + x + ) = Cov(x , x ) + Var( ) =1 2   1   2   1  2

Cov(x ,x ) + .1 2

The covariance between a masked variable and an unmasked variable is the same
as that between two unmasked variables, i.e.,

Cov(y ,x ) = Cov(x ,x ).i j   i j

APPENDIX A.3.  SUBDOMAIN ESTIMATION
 Let s stands for a subdomain, i.e.,  and  are the unmasked (x) and masked

variable (y) defined for subdomain s for variable j and  is the variance of .

Since the noise is generated for the full data set (rather than for each subdomain),
the relationship between  and  are as follows:

 =  + .

Since E( ) = 0,  E( ) = E( ).

Also since Var( ) = c  and Var( ) = Var( ) + cVar( ),

Var( ) =  = Var( ) - c .

Since Var( ) =  and  = Var( )/ , to recover the variance

of the unmasked variable from the masked data we can use

 = Var( ) - Var( ).                                (1)

Note the above formula for variance of a unmasked variable for a subdomain is a
linear combination of variance of the masked variable for the subdomain and a
fraction of variance of the masked variable for the full data set.

The covariance between two masked variables for a subdomain,  and , can

be derived similarly.  Note that
Cov( , ) = E[( + ),( + ) - E( + )E( + ).       (2)

Since we generate the random noise such that the noise independent of the
unmasked variable and Cov( , )=cCov( , ), equation (2) can be reduced

to Cov( , ) + cCov( , ).   Thus,

Cov( , ) = Cov( , ) - cCov( , ).

But as before, Cov( , ) = Cov( , )/ .  Thus to recover the

covariance between the unmasked variables from the masked data, we can use



x s
j x s

k y s
j y s

k

c
1%c

yj yk

x s
j y s

k x s
j x s

k

E

y x

14

Cov( , ) = Cov( , ) - Cov( , ).           (3)

Note the semblance of equation (3) with equation (1).
If one variable is masked but the other is not, then the covariance between the

variables is the same as the covariance between two unmasked variables, i.e., 

Cov( , ) = Cov( , ).

This is because the noise is generated independent of the unmasked variable.

APPENDIX A.4.  PARAMETER ESTIMATION FROM THE MASKED
DATA

As mentioned before E(Y) = E(X) and Var(Y) = (1+c) .  Thus variance of
unmasked variables can be recovered by dividing Var(Y) by (1+c).  The same
holds true for the sample estimates, i.e., the estimated variance of unmasked
variables can be recovered by dividing by (1+c) the estimated variance of masked
variables.  However, correlation is not affected by the added noise.  Note in
masking both variance and covariance are inflated by (1+c).  

As c is increased, deviation of estimates of the masked data could increase from
those of the unmasked, which is affected by amplified deviation.  

There is no random number generator which can generate random numbers that
produce the specified mean and variance because of the random variability of
noise.  Thus if we calculate mean and variance after adding noise, it is mostly likely
that sample mean  will be different from , and the variance of y will be different
from (1+c) times the variance of x.

APPENDIX A.5.  CONTROLLED DISTORTION
   This appendix provides the proof that controlled distortion is valid (i.e., can be
defined so that it preserves means and correlations).  We assume that the
subdomain A contains L  records.  We let (x , x   ..., x ), I = 1, ..., L, and (y , y ,2

i1  i2   iL        i1  i2

..., y ), I = 1, ..., L,  represent original data records and controlled-distorted dataiL

records, respectively.
Theorem A.5.  Let A be an arbitrary subdomain containing L  records where L is2

the number of fields.  Then a valid controlled distortion procedure can be defined.
 Proof.  The proof is via an inductive procedure that provides the algorithm
needed for the computer software.  We first observe that it is sufficient to find y's
such that

 3  x  = 3  y  , for j = 1, ..., L,  (1)I=1  ij  I=1  ij
1M   1M

 3  x  x  = 3  y  y , for I…j = 1, ..., L,  (2)I=1  ik jk  I=1  ik jk
1M    1M

where we define M = L .  The proof proceeds in steps.  At each step, we2
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successively consider pairs of variables.  On the first step, we consider only the
first two fields and the first two records.  For j > 2, we take  

  y  = x   for I = 1 and 2ij  ij

and for I > 2, we take

  y  = x   for j > 2.  ij  ij

Thus, the components of equations (1) and (2) associated with the first two fields
and the first two records reduce to 

  x  + x  = y  + y , (3)11  21  11  21

  x  + x  = y  + y , and (4)12  22  12  22

  x  x  + x  x  = y  y  + y  y . (5)11 12  21 22  11 12  21 22

Equations (3) and (4) are the means and equation (5) is the covariance.  At the first
step, we have no auxiliary restraints and we can distort x  arbitrarily to y  where11   11

we assume that x  > y .  Then, by equation (3), x  < y .  Let x  and x  be fixed. 11  11       21  21    12  22

The equations (4) and (5), are two equations in two unknowns y  and y  which12  22

we can solve.  For instance,

 y  = (1/(y  -1)) (x  x  + x  x  + y  x  + y  x ) . . . . . . . . . . . . . . . . . . . .  (6)i2  21  11 12  21 22  i1 12  i1 22

We need the additional minor restriction that y  … 1.  Observe that the means of21

all variables and the covariances between the first and second variables are
preserved by the above procedure, that we have used the first two records, and
that the y terms associated with the first two fields in all records beyond the first
two records agree with the original x terms.  We next wish to find complementary
adjustments to the third field such that all means and the covariances between the
first and second fields and the first and third fields are preserved. 
  We chose the next three records and consider the following equations:

  y  + y  + y  = c , (7)33  43  53  1

  y  y  + y  y  + y  y  = c , (8)33 31  43 41  53 51  2

  y  y  + y  y  + y  y  = c , (9)33 32  43 42  53 52  3

where c  = x  + x  + x , c  = x  x  + x  x  + x  x  + d , c  = x  x  + x  x  +1  33  43  53  2  33 31  43 41  53 51  2  3  33 32  43 42

x  x  + d , d  = x  x  + x  x  - y  y  + y  y , and d  =  x  x  + x  x  - y  y53 52  3  2  11 13  21 23  11 13  21 23   3   12 13  22 23  12 13

+ y  y .  We fix all y terms associated with fields 1 and 2 and with the first two22 23
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records.  Then equations (7), (8), and (9) are three equations in three unknowns
which is uniquely solvable if the array [1 1 1, y  y  y , y  y  y ] is nonsingular. 31 41 51  32 42 52

We note that the values in the array and the terms c , c , and c  are constant.  If the1  2   3

array is not nonsingular or we wish additional flexibility in solving for the y terms
associated with the third field for the newly added records, we can add more
records.  This increases the number of unknowns while the number of restraints
stays constant.  The terms d  and d  are adjustments for the effects of the new y2  3

terms associated with the first two records for the first two fields at the previous
step of the induction.  At the end of the second step, we have used n  records,2

means of all fields and the covariances among the first three fields are preserved,
and the y terms corresponding to records beyond record n  agree with the x terms2

for the first three fields.
   At step M-1, we have used n  =  S fields, all means and the covariancesM-1 def

among the first M-1 fields are preserved.  We take n  additional records andM-1

consider the equations

  y  + y  + ... + y  = c , (10)S,M  S+1,M    S+M-1,M  M,1

  y  y  + y  y  + ... + y  y  = c , (10+1)S,M S,1  S+1,M S+1,1    S+M-1,M S+M-1,M  M,2

  y  y  + y  y  + ... + y  y  = c , (10+M-1)S,M S,M-1  S+1,M S+1,M-1    S+M-1,M S+M-1,M  M,M-1

The constants c , c , ..., and c  contain adjustments for the first M-2 stepsM,1  M,2    M-1,M

that assure that the covariances between field M and the first M-1 fields are
preserved.  The coefficients in equations (10), (10+1), ..., and (10+M-1) are fixed
because they are based on the values determined during previous steps in the
induction.  Also, we can take more than the minimum M records to assure that a
solution to equations (10), (10+1), ..., and (10+M-1) can be obtained or that we
can choose among possible solutions.  Because the equations (10), (10+1), ..., and
(10+M-1) can be solved, the induction is complete. �


